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ABSTRACT 3 3  L7 I 
An important class of methods f o r  approximating so lu t ions  of 

non-linear systems of equations are the Gauss-Seidel o r  r e l axa t ion  

processes.  T h e  problem of obtaining asymptotic r a t e s  of conver- 

gence of these methods i s  t r e a t e d  here  by l i n e a r i z a t i o n  about a 

s o l u t i o n  of the  system. T h i s  leads t o  t h e  study of the  asymptotic 

behavior of s o l u t i o n s  of perturbed l i n e a r  d i f f e rence  equations and 

es t imates  f o r  t h e  decay r a t e  of such so lu t ions  a r e  obtained. These 

r e s u l t s  a r e  then appl ied t o  more general  d i f f e rence  equations and, 

i n  p a r t i c u l a r ,  t o  t h e  d i f fe rence  equations of t y p i c a l  Gauss-Seidel 

processes .  T h i s  gives  a prec ise  determination of the asymptotic 

ra te  of convergence of these  processes and i s  a genera l iza t ion  of 

known r e s u l t s  f o r  l i n e a r  systems of equations.  Application i s  

made t o  a p a r t i c u l a r  class of non-linear systems a r i s i n g  from mildly a non-linear e l l i p t i c  boundary value problems. I n  p a r t i c u l a r ,  esti- 

mates are given f o r  optimum overrelaxat ion parameters and the r e s u l t s  

of numerical experiments are presented. 



Non-linear Difference Equations and 

Gauss-Seidel Type I t e r a t i v e  Methods 

By James M. Ortega and Maxine L. Rockoff 

1. In t roduct ion  

Several  au thors  ([1]-[7]) have r e c e n t l y  considered Gauss- 

Se ide l  type i t e r a t i v e  processes (i.e. r e l a x a t i o n  processes)  f o r  

t h e  approximation of s o l u t i o n s  of a system of non-linear equations: 

(1.1) f ( x )  = 0 ( f i (x l ,  ..., x ) = 0, i = l , . . . , n ) .  

N o  d i scuss ion  of t h e  asymptotic r a t e  of convergence of t hese  pro- 

ces ses  h a s  y e t  been given, however, and t h e  purpose of t h i s  paper 

i s  t o  set  f o r t h  a gene ra l i za t ion  of t h e  l i n e a r  theory a s  descr ibed,  

f o r  example, i n  [8] and [9 ] .  

n 

If x* is  a so lu t ion  of (1.1) and 

i s  an i t e r a t i v e  process  such t h a t  x* = h ( x * ) ,  then expansion of h 

about x* l eads  t o  t h e  e r r o r  equation: 

( 1 . 3 )  (k )  + r ( e  (k 1 ) ,  k=0,1,  ... , = H e  ( k + l )  e 

where H = h ' ( x * )  i s  t h e  Jacobian matrix of h a t  x* and 

- x*. In  Sect ion 2 w e  study the  perturbed l i n e a r  d i f -  e 

f e rence  equat ion (1.3) under various assumptions on H ,  r and e . 

(k 1 = x  ( k )  

(0) 

In p a r t i c u l a r ,  w e  ob ta in  est imates  of t h e  form 
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where K i s  a f ixed  i n t e g e r ,  B o  and Bl are cons tan ts  depending on 

e('),  and h 2 p ( H )  i s  t h e  s p e c t r a l  r ad ius  of H. These est imates  

are r e l a t e d  t o  q u a l i t a t i v e  r e s u l t s  of Panov [lo] and may be of 

i n t e r e s t  i n  themselves. 

The i t e r a t i v e  processes  with which we  are concerned a r e  not 

n a t u r a l l y  of t h e  form ( 1 . 2 ) :  r a t h e r  t h e  i terates s a t i s f y  a more 

genera l  d i f f e rence  equat ion 

(k 1 w h e r e  g may be non-linear i n  x ( ~ + ' )  as w e l l  as x 

3 ,  w e  ob ta in  r e s u l t s  on the asymptotic behavior of so lu t ions  of 

(1 .5)  by means of the i m p l i c i t  func t ion  theorem together  with our 

previous r e s u l t s  f o r  ( 1 . 3 ) .  Then, i n  Sect ion 4 ,  w e  consider sane 

t y p i c a l  r e l a x a t i o n  processes  a s  appl ied t o  (1.1) and, under s u i t -  

able assumptions on f and hence g ,  w e  conclude t h a t  t h e  asymptotic 

ra te  of convergence i s  given by -ln[p(H)]. H e r e  H i s  t h e  matrix 

[g,] gy evaluated a t  (x*,x*) and g and g a r e  the  p a r t i a l  Frechet 

d e r i v a t i v e s  (Jacobian matrices) of g with r e spec t  t o  t h e  f irst  and 

second vec tor  va r i ab le s .  This genera l izes  t h e  corresponding r e s u l t  

of t h e  l i n e a r  theory.  

. I n  Section 

0 

-1 
X Y 

F i n a l l y ,  i n  Sect ion 5, we t r e a t  a p a r t i c u l a r  c l a s s  of non- 

l i n e a r  systems t h a t  arise, for  example, a s  d i s c r e t e  analogues of 

c e r t a i n  mildly non-linear e l l i p t i c  boundary value problems. H e r e  
0 
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w e  are able t o  make use fu l  a p r i o r i  comparisons between d i f f e r e n t  

i t e r a t i v e  processes  and, moreover, ob ta in  es t imates  f o r  optimum 

over-relaxat ion parameters. Some numerical experiments supporting 

the theory  are a l s o  included. 



- 4 -  

2 .  Pertrubed Linear Difference Equations a 
The following r e s u l t  i s  r e l a t ed  t o  a theorem of Ostrowski 

[ll, p. 1191 on po in t s  of a t t r a c t i o n .  

Theorem 1: Suppose H is an nxn matrix with s p e c t r a l  r ad ius  

p ( H ) = A < 1  and l e t  r : Q c R  +R 

hood Q of the o r i g i n  of R i n t o  R such t h a t  

n n  denote a mapping of an open neighbor- 

n n 1 

Then, given any cons tan t  6 w i t h  A < A + 6 < 1 ,  t h e r e  are an open neigh- 

borhood R' of t h e  o r i g i n  and a constant  d such t h a t  f o r  any i n i t i a l  

vec to r  e ' O ) E  Q 1 , a s o l u t i o n  [e  (k)] of t h e  d i f f e rence  equation (1.3) 

e x i s t s  and s a t i s f i e s  
0 

Proof: Let (see, e .g . ,  [ 1 2 ,  p.461) 11 1 1 '  be a norm such t h a t  

Then t h e r e  a r e  p o s i t i v e  constants  c1 and c such t h a t  f o r  a l l  xERn 2 

and, by ( 2 . 1 ) ,  t h e r e  e x i s t s  a o>O so t h a t  

Throughout t h e  paper I\ 11 denotes an a r b i t r a r y  vector  norm a s  w e l l  
1 

a s  the corresponding opera tor  ( lub )  norm. 
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(2.4) 

by (2.3)  and (2 .4 ) ,  

E R' and, by induct ion,  it follows t h a t  e (k) E S a ' ,  
(1) Therefore e 

k=2,3,  ..., and 

Then ( 2 . 2 )  follows using (2.3) and t h e  proof is  complete. 

0 
Corol lary:  L e t  H and r s a t i s f y  t h e  condi t ions of Theorem 1 and 

l e t  {e(k)J be any s o l u t i o n  of (1.3) such t h a t  e (k)  40 a s  k+w. Then 

( 2 . 5 )  

e x i s t s  and y51. Suppose (k) Proof: Since e -0, y = l i m  sup Ile 

y>A=p(H). L e t  6=(y-X) /2  and l e t  n '  be t h e  neighborhood given by 

Theorem 1 f o r  t h i s  6 .  Then t h e r e  e x i s t s  an index k such t h a t  

e 

0 

E s 2 '  and, by Theorem 1, the  sequence {e (k) 1 k = ko,ko+l , .  . . I  (k, 1 

s a t i s f i e s  ( 2 . 2 ) .  Hence 
1 

y = l i m  sup \le = l i m  sup 
k-.- k Z ko 

= l i m  sup [d ( l+6)k  \\e(o)j(]k 
k Z ko 
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@ which i s  a cont rad ic t ion .  

Under add i t iona l  assumptions on r w e  a r e  a b l e  t o  sharpen the 

estimate ( 2 . 2 ) .  

L e t  K + 1  be the dimension of the l a r g e s t  Jordan block of H assoc ia ted  

with an  eigenvalue of modulus A .  Then f o r  any s o l u t i o n  {e ( k ) ]  of 

(1.3) such t h a t  e ( k ) + O  as  k 4 ,  there e x i s t s  a constant  B such t h a t  

Moreover, t h e r e  e x i s t s  a so lu t ion  {e ( k ) ]  of (1.3) w i t h  e ( k ) - + o  a s  

k+-, and a constant  po>O such tha t  0 
(k)  K k  \le 11 Z f3 k h , k = O , l , . . .  . 0 (2.8) 

1 - 
Proof: 

the neighborhood given by Theorem 1 f o r  t h i s  6 . 
any s o l u t i o n  of (1.3) such t h a t  e ( k ) d O  as  k+=, there is  a ko f o r  

which e E n', k Z k  . Consequently, w e  may assume, without loss of 

g e n e r a l i t y ,  t h a t  e (k)€  n', k=O,l, . . . 

Choose y such t h a t  As<y<l ,  set 6 = ( A y ) l + c - D O  and l e t  a '  be 

Then i f  {e ( k ) j  is  

(k 1 
0 

. 
Since [e ( k ) J  i s  a so lu t ion  of (1.3), w e  have 

k-1 

(2 .9)  e (k) = Hke(o) + 1 HJr (e  (k-j-1) ),Hke(0) + u (k) , k=1,2,  ... . 
j = O  
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Moreover, from ( 2 . 2 ) ,  (2.61, and t h e  d e f i n i t i o n  of 6 ,  it 

follows t h a t  

, k=0 ,1 , .  . . (k 1 ) I (  s c[d(A+6) k \\e (0) 111 l + c  = doA k y k \ \e ( o ) \ l l + E  

l + S  where do = cd . Therefore,  s ince t h e r e  e x i s t s  a constant  q, 

lsq<=, such t h a t  

(see, e .g . ,  [12, p. 183]), w e  obtain t h e  estimate 

(2.10) 

j = O  

where 
-1 -1 

(2.11) c1 = 9do(l-y) A . 
Hence 

and t h i s  e s t a b l i s h e s  ( 2 . 7 ) .  

Now l e t  h l  be an eigenvalue of H of modulus A with which t h e r e  

i s  a s soc ia t ed  a Jordan block of dimension K+1.  Then t h e r e  e x i s t s  

a p r i n c i p a l  vector  v ,  with Ilvll = 1, and an eigenvector v such t h a t  
0 

8 Choose e(')=Qv E 0 '  where 8 s a t i s f i e s  0 < p3 S $l\vol\ , with v given 
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1' 
and it fol lows,  using ( 2 . 1 2 ) ,  t h a t  f o r  some in t ege r  k 

(2.13) 

But then  t h e r e  exists a 8,  w i t h  0<B0s(9/4)/)v0\( 

holds .  

and t h i s  would imply e -0 for a l l  ksk . 

such t h a t  ( 2 . 8 )  

For, otherwise,  w e  would have e(ko)=O f o r  some k <k 
0 1' 

(k)- 
0 

Corol lary:  L e t  H and r s a t i s f y  t h e  condi t ions of Theorem 2 with 

the exception t h a t  p ( H ) = O  is not  excluded. Then m 

where t h e  supremum i s  taken over a l l  so lu t ions  {e ( k ) ]  of (1.3) 

such tha t  e -0 a s  k--. (k )  

Proof:  By t h e  co ro l l a ry  t o  Theorem 1, w e  have 
1 

(k )  sup { l i m  sup 11 e \I 3 P ( H ) ,  
kda 

and i f  p ( H ) = O ,  e q u a l i t y  holds i n  (2.14).  I f  p ( H ) # O ,  then t h e  re- 

ve r se  inequa l i ty  follows f r o m  ( 2 . 8 ) .  This completes the  proof.  

W e  conjecture  t h a t  (2.14) holds i f  r s a t i s f i e s  only ( 2 . 1 ) .  

However simple examples show t h a t  t h e  es t imates  ( 2 . 7 )  and (2.8)  

do n o t  hold even when n = 1. 
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3 .  Applicat ion t o  More General Difference Equations 

W e  now apply t h e  r e s u l t s  of the previous s e c t i o n  t o  d i f f e rence  
a 

equat ions of the form ( 1 . 2 )  and f o r  no ta t iona l  convenience w e  de- 

f i n e  the following c l a s s  of funct ions.  

n n Def in i t i on  1: L e t  g:D c R X Rn -, R denote a mapping from a 
g 

n n n domain D i n  the product space R x Rn i n t o  R . Suppose S C R i s  
g 

a non-empty set such t h a t  S x S  c D and l e t  x* be a poin t  i n  t h e  
g 

c losu re  of S. Then g i s  defined t o  belong t o  the class of funct ions 

5 ( s ; x * )  i f  f o r  each i n i t i a l  vector x(O)E S, t h e  d i f f e rence  equation 

( 1 . 2 )  has a unique so lu t ion  {x (k) ,k=O,l,...] c S which converges 

t o  x*. Each s o l u t i o n  {x (k)] c S of (1.3) w i l l  be called a g - E -  

quence on S. 0 
W e  note  t h a t  i f  g(x,y)=x-Hy-r(y), where H and r s a t i s f y  the 

condi t ions  of Theorem 1, then g E 3(0';0) with R '  the neighbor- 

hood given by t h e  theorem. 
1 2 

I f  V i s  an open set i n  D we w r i t e  g E C ( V )  i f  a l l  2n 
g' 

p a r t i a l  d e r i v a t i v e s  of the components of g e x i s t  and a r e  continuous 

3 
on V.  I f ,  i n  add i t ion ,  a l l  4n second p a r t i a l  de r iva t ives  e x i s t  

and a r e  continuous on V ,  we write g E C ( V ) .  F ina l ly ,  w e  denote 

by gx and g 

2 

t h e  nxn matrices:  
Y 

n 
Theorem 3: L e t  S' be an open neighborhood of a po in t  x* E R - 

0 
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1 -1 Assume t h a t  g E C (S' x S I ) ,  g is  defined and continuous on 

SI x S' and g(x*,x*) = 0. Define 
0 X 

( 3 . 1 )  H - [gx(x*.x*)]-lgy(x*,x*) 

and suppose that  p(H)-h<l. Then t h e r e  e x i s t s  a neighborhood S of 

x* such that  g E 5 ( S ; x * ) ;  moreover, each g-sequence on S s a t i s f i e s  
1 

(3.2) 

I f ,  i n  addi t ion ,  
2 

(3.3) g E c (S' x SI), 

and h#O, then f o r  each g-sequence {x (k)] on S, there i s  a constant 

B such t h a t  

(3 .4)  

where K is  def ined as i n  Theorem 2 .  Moreover the re  e x i s t  a g-se- 

quence {x (k)] on S and constant Bo>O such t h a t  

(3 .5)  llx(k) - x* 11 2 B o  h k k K ,  k=1,2, .  .. . 
Proof: By the i m p l i c i t  function theorem (see, e.g. ,[13, p .  2651)  

t h e r e  e x i s t  an open neighborhood T of x* and a unique funct ion h 

def ined  on T w i t h  the property t h a t  ( h ( y ) , y ) c S '  x S '  and g ( h ( y ) , y )  = 0 

f o r  a l l  y E T ;  i . e . ,  the equation g ( x , y )  = 0 has  a unique so lu t ion  

x E S' f o r  a l l  y E T.  Moreover x* = h ( x * ) ,  h '  e x i s t s  and i s  con- 

t inuous  on T and h ' ( x * )  = H. 

Therefore,  i f  SCT i s  a neighborhood of x*, then every g-sequence 
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and, consequently, {x(k)3  on s s a t i s f i e s  x (k+l) = h ( x  e 
(3.6) x (k+ l )  - x* = H ( x ( k )  - x*) + r ( x  (k)  - x * ) ,  k=0,1, ... 
where 

r(x-x*) = h(x) -h(x*)  - H(x-x*). 

Conversely, every sequence 

quence on S. Then, s ince  r s a t i s f i e s  (2 .1 )  wi th  Q = {x-x* I xET], 

all t h e  condi t ions of Theorem 1 hold f o r  (3 .6) .  Hence g E 5(S;x*) 

where, i f  Q '  i s  t h e  set given by Theorem 1, S = {x I x-x* E n ' ] .  

x ( ~ ) + x *  s a t i s f y i n g  (3.6) i s  a g-se- 

Moreover, (3.2) fol lows immediately from t h e  Corol lary t o  Theorem 1. 

Now i f  (3.3) is  s a t i s f i e d ,  it also fol lows from t h e  i m p l i c i t  

func t ion  theorem t h a t  h i s  twice continuously d i f f e r e n t i a b l e  on T .  

L e t  T '  be an open neighborhood of x* such t h a t  T' C T. 

Taylor remainder theorem implies t h a t  t h e  func t ion  r of (3.6) 

s a t i s f i e s  

Then t h e  

Hence r s a t i s f i e s  (2 .6)  with 0 = {x 1 x+x* E T o ]  and the re fo re  (3.4) 

and (3.5)  are res ta tements  of t h e  conclusions ( 2 . 7 )  and (2.8) of 

Theorem 2 .  
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0 4. I t e r a t i v e  Processes and Asymptotic Rates of Convergence 

The r e s u l t s  of t h e  previous s e c t i o n s  now permit t h e  determina- 

t i o n  of asymptotic r a t e s  of convergence of c e r t a i n  i t e r a t i v e  pro- 

cesses app l i ed  t o  t h e  approximation of so lu t ions  of (1.1). The 

processes  w e  consider are those whose i terates s a t i s f y  a d i f f e rence  

equat ion of t h e  form ( 1 . 2 )  and w h i l e  t h i s  includes,  by d e f i n i t i o n ,  

a l l  one s t e p  methods, our a t t e n t i o n  w i l l  be focused on r e l axa t ion  

type processes .  

are def ined by (4.1)8 (4 .2 )  and ( 4 . 3 ) ,  are t y p i c a l .  

The following, whose assoc ia ted  d i f f e rence  equations 

I. The Jacobi-Newton-Process (J-N-P)  . (See [ 21  and [SI .) 

11. The Extrapolatated-Gauss-Seidel-Newton-Process (E-G-S-N-P). 

(See V I 8  D8 P. 1361, M I  - L71.1 

where 

111. The non-linear Gauss-Seidel (Liebmann) Process (G-S-P) . 
(See [l], [3 ,  p.  1351 and c71.)  

For a more genera l  discussion of t hese  and seve ra l  r e l a t e d  processes,  

i nc lud ing  block forms of I, I1 and 111, see [141. 
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Note t h a t  i n  order  t o  carry ou t  t h e  G-S-P, a non-linear equa- 

t i o n  i n  a s i n g l e  v a r i a b l e  must  be solved f o r  each i and k. Note 

a l s o  tha t  i f  f i s  l i n e a r ,  i .e. f ( x )  = Ax-b, then I ,  I1 and I11 

reduce t o  the usual  c y c l i c  Jacobi,  c y c l i c  Extrapolated Gauss-Seidel 

(SOR) and c y c l i c  Gauss-Seidel processes respec t ive ly .  

Now le t  g E 5(S;x*)  (Def in i t ion  

(4 .4)  ~ ( 9 ; s )  = sup {lim sup 
k+= 

1) and def ine  the quan t i ty  
1 

where t h e  supremum i s  over a l l  g-sequences {x (k)j on s. 

x ( ~ ) - x * - O  a s  k - m ,  the q u a n t i t y  i n  bracke ts  i n  (4 .4)  always e x i s t s  

and i n  bounded by un i ty .  Moreover, an argument using ( 2 . 3 )  e a s i l y  

Since 

shows t h a t  a ( g ; S )  is independent of t h e  p a r t i c u l a r  norm. Therefore 

a (g ;S )  i s  well-defined and s a t i s f i e s  
0 

0 s a (g ;S )  1. (4 .5 )  

I n  gene ra l ,  of course,  a (g ;S)  is  dependent on S. However, the case 

of g r e a t e s t  i n t e r e s t  is  when S is a neighborhood of x* and w e  have 

t h e  fol lowing r e s u l t .  

Lema 1: Let S and S '  be open sets such t h a t  x* E S n S '  and assume 

t h a t  g E 5(S;x*)n5(St ;x*) .  Then a ( g ; S )  = a ( g ; S ' ) .  

(k)] is  a g-sequence on S, then f o r  some k Proof: I f  {x 

and {x (k) I k = ko, k +1, . . . ] is a g-sequence on S' . But s ince  

x(~O)E S n S ' C S '  
0' 

1 
k 
- 1 0 - 

l i m  sup ~ l x ( k ) x * / j ~  = l i m  sup ~~x(&)x*l l  
kdco k2ko 
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it fol lows that  a(g;S)Sa(g;S'). 

t h e  symmetry of t h e  argument. 

The reve r se  i n e q u a l i t y  follows by e 
It i s  clear that ,  without a d d i t i o n a l  condi t ions on g,  it i s  

impossible t o  conclude more than (4.5) about the magnitude of ac(g;S). 

Suppose, however, that  g ( x , y )  = x-Hy+c, w h e r e  c i s  a constant vector  

and p ( H ) < l .  Then s t a t e d  i n  our terms, a fundamental r e s u l t  i n  the 

theory of i t e r a t i v e  processes  fo r  systems of l i n e a r  equations i s  

t h a t  t h e r e  e x i s t s  a unique x* E Rn such tha t  g E 5(Rn;x*), and 

n 
(4.6) c r ( g ; R  = p ( H ) .  

The  conclusions of Theorem 3 now provide a genera l iza t ion  of (4.6).  

Coro l la ry  t o  Theorem 3 :  Let g s a t i s f y  the condi t ions of Theorem 3 

with the exception of ( 3 . 3 ) .  Then t h e r e  e x i s t s  a neighborhood S 0 
of x*, such t h a t  g E 3 ( S ; x * )  and 

(4.7) a (g ;S)  p ( H ) ,  

where H i s  def ined by ( 3 . 1 ) .  I f ,  i n  add i t ion ,  g sat isf ies  ( 3 . 3 1 ,  

then  

Proof: (4.7) fol lows immediately from (3.2). I f  p ( H ) # O ,  (4.8) 

fol lows from (4.7) and (3.5). I f  p ( H )  = 0 ,  then ,  by (4.71, ac(g;S) = 0 

so tha t  (4.8) ho lds  i n  any case. This completes t h e  proof.  

W e  m n j e c t u r e  t h a t  (4.8) holds  without t h e  add i t iona l  assumption 

0 ( 3 . 3 ) ;  see t h e  remarks following the Corol lary t o  Theorem 2 .  



f 

I '  

- 15 - 

Clearly o[(g;S) can be considered a measure of the slowest 

When 

/ 

possible asymptotic convergence of any g-sequence to x*.  

applied to general one-step iterative processes, however, cr(g;S) 

may give only a minimal amount of information. For example, sup- 

pose there exist constants y and pZ1 such that for all g-sequences 

on S 

(4 .9 )  

parison of different "higher order" methods, However, our interest 

here is in processes for which p = 1. In this case, cr (g ;S)  5 y and 

the determination of a ( g ; S )  may yield a sharper asymptotic conver- 

gence measure than the geometric estimate provided by (4 .9 ) .  0 
In the sequel, it will be convenient,and consistent with the 

linear theory, to adopt the following terminology. If g E 5(S;x*), 

where S is a neighborhood of x*, and (1.2) is the difference equation 

of an iterative process, then we shall define 

(4.10) 

to be the asvmptotic rate of converqence of the process (on S and 

hence, by Lemma 1, on any other neighborhood S' of x* for which 

g E 5(S';x*) ) .  

then we say that R(g ) is the asymptotic rate of convergence of 

the Jacobi-Newton-Process (or the a.r.c. of the J-N-P, for short.) 

For example, if gI is given by (4.1) and gI E 5 ( S ; x * )  

I 

0 
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@ Moreover, if g 

is asymptotically faster than the G-S-P if R ( g I )  > R ( g I I I )  or 

asymptotically equivalent if R ( g  ) = R ( g I I I  ) .  

apply for comparison of the other processes. 

E 5(S;x*) and gIII € 5(S;x*), we say that the J-N-P I 

, 

Similar statements I 

of (4.1), I11 and g I' g 1 1 , w  
We now consider the functions g 

(4.2) and (4.3) in more detail. Assume that the function f of (1.1) 

satisfies, for some x* E R ~ ,  

(4.11) f€C3(S'), S' = [X 1 \xi-xz\ < 6 ?+a, i=l, ... n], 
and 

(4.12) f(x*) = 0. 

That is, f is defined and three times continuously differentiable 

on an open cube S' and the system f(x) = 0 has a solution x* E S I .  - - 

are defined and twice continu- I11 
Then the functions gI,gII,u, and g 0 
ously differentiable on S' and S'; furthermore 

(x*,x*) = 0. 
gIII 

(4.13) gl(x*,x*) = gII,w (x*,x*) = 

Let the Jacobian matrix f'(x) be written as 

(4.14) f'(X) = D(x) - E(x) - F(x), x E S', 

where D, E and F are diagonal, strictly lower triangular and strictly 

upper triangular respectively, and assume that 

(4.15) det[D(x)] # 0, x E S'. 

-1 
I' gII,m Then g exists and is continuous on S'xS' for each of g 

X 

Moreover, if we denote by HI, HII,w and HIII, the 
I11 and g 0 
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-1 
and g res- e Y I' % , w  I11 

matr ices  - [ ~ , ( X * ~ X * ) ]  g (x*,x*) f o r  g 

pec t ive ly  , then 

= [ D ( X * ) I - ~ [ E ( X * )  + F(x*)] ,  
HI (4.16) 

-1 
F(X*) - 

(4.18) HIII = [D(x*) - E ( X * ) ]  - HIIl l*  

Now assume t h a t  

Then a l l  of t h e  condi t ions of Theorem 3 a r e  s a t i s f i e d  f o r  each of 

and t h e  following theorem is  simply a r e s t a t e -  111' 
and g 

91' g11,U.l 

ment, us ing  (4.10),  of t h e  conclusions of Theorem 3 and i ts  Corollary.  
0 

Theorem 4: L e t  f s a t i s f y  the condi t ions (4.11) ,  (4.12) and (4.15) 

1' s2,w and assume (4.19) ho lds .  Then there e x i s t  neighborhoods S 

and S3 of x* such t h a t  

I 

Moreover , 

N g l )  

and 

(4.20) R 

R(gII,u) 1 

g11 ,1 )=  

Therefore ,  under t h e  assumptions of Theorem 4,  t h e  asymptotic 

rates of convergence of the processes I ,  I1 and I11 are determined 
0 
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res- and HIII e by t h e  s p e c t r a l  r a d i i  of t h e  matrices HI, HII,w 

pec t ive ly ;  t h i s  genera l izes  the corresponding r e s u l t  i n  t h e  l i n e a r  

theory.  Of course,  t o  compare these  s p e c t r a l  r a d i i  and, moreover, 

t o  v e r i f y  t h a t  t h e  condi t ions (4.19) hold,  w e  need t o  assume more 

about f ;  t h i s  w e  s h a l l  do i n  t h e  following sec t ion .  Note, however, 

tha t  Theorem 4 a l ready  y i e l d s  one i n t e r e s t i n g ,  although perhaps 

i n t u i t i v e l y  obvious, comparison, namely, t h a t  under the  condi t ions 

of t h e  theorem, t h e  G-S-N-P and t h e  G-S-P a r e  asymptotically 

equiva len t .  ( O f  course,  t h i s  says nothing about t h e  q loba l  be- 

havior  of t h e  processes:  however, see t h e  numerical experiments 

of t h e  next s ec t ion . )  



- 19 - 

5. Applications e 
The condi t ions imposed upon the funct ion f i n  the previous 

s e c t i o n  are admittedly s t r ingen t ;  i n  p a r t i c u l a r ,  t h e  v e r i f i c a t i o n  

of (4.19) r equ i r e s ,  i n  general ,  t h a t  the so lu t ion  x* of (1.1) be 

known. However, f o r  c e r t a i n  funct ions a r i s i n g  i n  p r a c t i c e  it may 

be q u i t e  simple t o  a s c e r t a i n  t h a t  a l l  of these conditions are f u l -  

f i l l e d  and t o  make use fu l  a p r i o r i  comparisons of d i f f e r e n t  i tera-  

t i v e  processes.  In  t h i s  sec t ion  w e  continue the ana lys i s  of g , I 

for  a p a r t i c u l a r  c l a s s  of equations f ( x )  = 0 which 
I11 

and g 
g I I , w  

a r i s e ,  f o r  example, a s  t h e  d i s c r e t e  analogues of c e r t a i n  mildly 

non-linear e l l i p t i c  boundary value problems of t h e  type Au = a ( u )  

(see, e.g. ,  [ 4 ] ) .  The development i s  based upon t h e  corresponding 

theory  f o r  l i n e a r  problems a s  described, f o r  example, i n  Forsythe 

and Wasow [8] and Varga [93 and w e  refer t o  these  references f o r  

a 

d e f i n i t i o n s  of t h e  terminology used here .  

Consider the system of equations 

(5.1) f ( x )  = Ax + a’(x) = 0,  

and assume t h a t  

(5.2) A i s  i r r educ ib ly  diagonal ly  dominant, 

and 

(5.3) A = D - E - F ,  D Z O ,  E + F Z O ,  

where D,  E ,  and F a r e  diagonal,  s t r i c t l y  lower t r i angu la r  and 

a s t r i c t l y  upper t r i a n g u l a r  respec t ive ly .  About t h e  non-linear 
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function #, we assume that each component J?fi is a function of a 

single variable and that 
e 

(5.4) J?fi(x) = ai(xi), i=l, ..., n, 
3 

(5.5) Idi E c ( - O D , + - ) ,  i=l, ..., n, 
and 

(5.6) @i(t) z 0, -act<=, i=l, ..., n. 
Under these hypotheses it may be shown that (5.1) has a 

unique solution x*. (See, e.g., 1.41, or for symmetric A,  [73). 

Moreover, it is easily verified that (4.11) holds with S '  = Rn. 

Furthermore, f'(x) = D + Id'(x) - E - F where, by (5.4) and (5.6), 
#'(x) is a non-negative diagonal matrix. Hence using (5.2) and 

(5.3), (4.15) holds and, in order to apply Theorem 4, it remains 0 
to examine the spectral radii of the matrices H and H of I I 1 , w  

(4.16) and (4.17). 

For notational convenience we define 

(5.7) 

and 

-1 
HI(Z) = Z (E + F), 

for all non-singular diagonal matrices Z. 

and H 

Jacobi and SOR matrices for the linear problem 

Then HI = HI(D + J?f'(x*)> 
- - (D + J?f' (x*)) while HI(D) and HII (D) are the 

I1,w HII,w I W  

(5.9) Ax = 0. 



- 2 1  - 

Now f o r  any diagonal matrix D1 2 D w e  observe d i r e c t l y  from 

( 5 . 7 )  and (5.8), using ( 5 . 3 ) ,  t h a t  

0 S H (D 5 H (D), D1 S D I 1  I 

and 

O Z H  (D1) 5 H (D), D1 Z D ,  0 < w 5 1. I 1 , w  I I , w  

Hence, by (5.2) and t h e  Perron-Frobenius theory,  w e  conclude t h a t  

(5.10) 

and 

where e q u a l i t y  holds  i n  (5.10) and (5.11) i f  and only i f  (d'(x*) = 0. 

Moreover, by the Stein-Rosenberg Theorem (see [9,  p.  68]), * 
(5.12) 

F i n a l l y  it can be shown t h a t  (see [ S I  p. 921) 

) ,  0 < w1 < w 5 1. 
(HII , w 2  2 

(5.13) 

NOW, using (5.10) and (5.11),  Theorem 4 may be appl ied  and 

our conclusions thus  f a r  may be summarized a s  follows. Each func- 

i s  contained i n  5(S';x*) 
I11 , 0 < w S 1, and g 

I' g11,w t i o n  g 

where S '  is  some neighborhood depending on the p a r t i c u l a r  process.  

(Actua l ly ,  under a d d i t i o n a l  assumptions on fl or  A ,  much more i s  

known about t h e  g loba l  convergence p rope r t i e s  of t h e  Gauss-Seidel 

and Gauss-Seidel-Newton processes. See [4]  and [ 7 ] ) .  By (5 .10 ) ,  
0 
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the asymptotic rate Of convergence (a. r. c.) of the Jacobi-Newton 

process for (5.1) is not less than that of the Jacobi process for 

(5.9), and is greater if @'(x*)#O. Likewise, by (5.111, the a. r. c. 

of the G-S-N-P and (since, HIII 

for (5.1) are equal and are not less than that of the G-S-P for 

(5.9). Moreover, by (5.12), the a. r. c. of the G-S-N-P for (5.1) 

is greater than that of the J-N-P for (5.1). Finally, by (5.13), 

the a. r. c. of the E-G-S-N-P is a monotonically increasing func- 

e 

) the a. r. c. of the G-S-P - - 
HII, 1 

tion of w for w S 1 .  Hence, under the conditions imposed on f, the 

only reason that could be advanced for under relaxing the E-G-S-N-P, 

is to improve the global convergence. 

5.2 We now consider g for 0 1  and in addition to the assump- 
1 1 , w  

tions already made about (5.1) we add the following: 

(5.14) A is 2-cyclic and consistently ordered, 

(5.15) A is symmetric. 

We can then apply all of the theory first developed by Young [15] 

for the point successive overrelaxation of linear problems. 

We first note that if Z is any diagonal matrix, (5.14) implies 

that Z - E - F is again 2-cyclic and consistently ordered. Now 

let 

(5.16) 2 % D. 

Then HI(Z) exists and, by (5.15), is similar to a symmetric matrix; 
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hence H ( 2 )  has  real eigenvalues. Furthermore t h e  fundamental 

r ela t i onship 

I 0 

holds between t h e  eigenvalues p ( 2 )  of H (Z) and t h e  eigenvalues 
I 

(Z). Thus i f  w (Z) denotes t h a t  value of w which 
,w opt 

v ( z )  of HII 

minimizes p [ H (Z)], then it follows from (5.17) t h a t  II,w 

(5.20) (213 = w - 1 ,  w I w I 2. 
PIHII,w opt  

0 Now l e t  D be a diagonal matrix such t h a t  1 

(5.21) 

Then 

(5.22) 

1' D + j?f'(x*) S D 

and,using (5.18) through (5.22), t h e  s p e c t r a l  r a d i i  of HII (D1) I 
r w  

and H ( D )  are r e l a t e d  as shown i n  Diagram A .  
I I , w  1 1 , w  

H 

These r e s u l t s  can be summarized as follows. Under the as- 

sumptions (5.1)  through (5.6), (5.14) and (5.15), gII,w appl ied 

t o  (5.1)  f o r  any 0 < w < 2 s a t i s f i e s  t he  condi t ions of Theorem 4; 

hence f o r  each 0 < w < 2, there  i s  a neighborhood S such t h a t  w 

E 5 ( S  ;x*) .  Moreover, t he re  e x i s t s  an optimum w, such t h a t  % I , w  w 0 
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and, f o r  t he  matrix D of (5 .21) ,  U) s a t i s f i e s  
1 opt 

(5.24) 

F i n a l l y ,  

that  i s ,  the  a.  r .  c. of t he  E-G-S-N-P is  a t  l e a s t  as  g r e a t  when 

t h e  process  i s  appl ied  t o  (5 .1)  as when it i s  appl ied t o  (5 .9 ) .  

5.3 Along with t h e  E-G-S-N-P t h e r e  i s ,  of course,  an ex t rapola ted  

non-linear Gauss-Seidel-Process (E-G-S-P) whose i terates  s a t i s f y  

t h e  d i f f e r e n c e  equat ion:  

I n  t h e  previous s e c t i o n  w e  showed t h a t  t h e  asymptotic r a t e s  of con- 

vergence of t h e  E-G-S-P and t h e  E-G-S-N-P w e r e  t he  same i f  w = 1. 

In  an analogous way it may be shown t h a t  they are the  s a m e  f o r  a l l  

c u ;  hence the conclusions of this s e c t i o n  f o r  t he  E-G-S-N-P apply 

verbatim t o  t h e  E-G-S-P. 

5.4 I n  Table I w e  summarize the  r e s u l t s  of some numerical experi-  

ments i n  which t h e  E-G-S-N-P and the  E-G-S-P w e r e  appl ied  t o  d i s c r e t e  

analogues of t h e  following boundary value problems ( the  domain of 

each problem is  R = [O,l] x[O,l]  and h is  the  boundary of R): 

X a )  AX = e : x ( s , t )  = s + 2 t ,  (s,t) E 6 
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3 

3 

b) Ax = x : x ( s , t )  = s + 2 t ,  ( s , t )  E 6 

c)  Ax = x : x ( s , t )  = 0 8 ( s , t )  E si 

d )  AX = 0 , x ( s , t )  = 0 8 (s t t )  E 

Experiments involving problem a )  have been reported i n  [43. 

I n  each case,  t h e  Laplacian operator was approximated by using 

the usua l  5-point formula w i t h  h = .05. This gives  f o r  each problem 

a system of 361 equat ions of the form: 

-i - x  - x  - x  i + l , j  + L a ( x i , j  1 = 0 ,  
(5.26) 4 ~ ~ , ~  - X i, j-1 i, j+l i-1, j 

i , j  = 1, ..., N-l,N=h -1 , 

X where o ( x )  = e ,x3,x3 and 0 for a), b ) ,  c ) ,  and d )  r e spec t ive ly  

and the order ing  of t h e  g r i d  po in t s  i s  l e f t  t o  r i g h t ,  bottom t o  top. 

I t  i s  easy t o  v e r i f y  t h a t  each of the systems (5.26) s a t i s f i e s  t h e  

condi t ions  (5.1)-(5.6) ,  (5.14) and (5.15);  hence t h e  theory of t h i s  

s e c t i o n  appl ies .  

Clear ly  c)  and d )  have the  unique so lu t ions  x 0 and t h e  same 

i s  t r u e  of their  d i s c r e t e  analogues (5.26).  Therefore,  @ ' ( x * )  = 0 

and t h e  optimum w f o r  t h e  E-G-S-N-P and E-G-S-P appl ied t o  c )  

i s  the s a m e  as  tha t  f o r  t h e  l i n e a r  problem d ) .  Using (5.18) and 

t h e  known eigenvalues of t he  corresponding Jacobi matrix,  it may 

be computed exact ly:  

(5.27) w 1.73 .  
op t ,  c ,d .  

By (5.24) ,  (5.27) a lso gives  an upper bound f o r  w and U) o p t , b *  opt , a 
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0 I n  fac t ,  a f t e r  approximate so lu t ions  of (5.26) w e r e  obtained, we  

computed 

u) 1.705, w 1.701 
o p t ,  a OPt,b 

by approximating t h e  spectral r a d i i  of t h e  corresponding Jacobi  

matrices H ~ ( D  + a’’ ( x * ) ) .  

W e  used s t a r t i n g  approximations determined a s  follows: 

1. The boundary conditions w e r e  l i n e a r l y  in t e rpo la t ed  a t  each 

g r i d  poin t .  

2 .  A func t ion  value of 50 w a s  taken a t  each g r i d  poin t .  

For problems c )  and d )  only 2 . i s  appl icable .  

I n  T a b l e  I w e  t a b u l a t e  t h e  number of i t e r a t i o n s  and seconds 

of machine t i m e  requi red  t o  s a t i s f y  a convergence test  of 

All ca lcu la t ions  w e r e  done on an IBM-7094- 

11. The machine t i m e  includes a c e r t a i n  amount of p r i n t i n g  and does 

no t  reflect an optimal program: however, it i s  t h e  r e l a t i v e  t i m e s  

t h a t  are of i n t e r e s t .  

The E-G-S-P w a s  c a r r i e d  out by f i r s t  so lv ing  the indiv idua l  

equat ions of (5.26) by Newton’s method ( w i t h  a convergence c r i t e r i o n  

of f o r  the r e s i d u a l )  and then ex t rapola t ing .  

Table I shows t h a t  the use of the t h e o r e t i c a l  optimum w produces 

t h e  f a s t e s t  convergence i n  most cases: t h i s  tends t o  s u b s t a n t i a t e  

t h e  theory.  

w ( &  1.73) f o r  the l i n e a r  problem is  almost a s  good. 

However it i s  c l ea r  t h a t  the use of the optimum 

Perhaps the 0 
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0 most i n t e r e s t i n g  f a c t  i s  t h a t  t h e  E-G-S-P and t h e  E-G-S-N-P tend 

t o  take almost exac t ly  the same number of i t e r a t i o n s .  I Our theory 

p r e d i c t s  t h a t  asymptot ical ly  t h i s  is t r u e  b u t ,  of course, does not  

i n d i c a t e  t h a t  t h i s  should be t r u e  g loba l ly .  Note, however, t h a t  

f o r  t h e  problem a ) 2 ,  

i t e r a t i o n s  than t h e  E-G-S-P. 

proximation and t h e  r e s u l t i n g  magnitude of e 50 . 
E-G-S-N-P w a s  always 1% t o  2 t i m e s  a s  f a s t  a s  the E-G-S-P. 

W e  a l s o  r an  a l l  of t h e  tes t  problems f o r  w = 1; convergence 

t h e  E-G-S-N-P took s i g n i f i c a n t l y  more 

This w a s  due t o  the poor s t a r t i n g  ap- 

I n  any case t h e  

w a s  never achieved before  the program w a s  stopped a f t e r  300 i t e r a -  

t i o n s .  F i n a l l y ,  w e  run  numerous problems f o r  h = .1 (81 equat ions)  

b u t  there w a s  no q u a l i t a t i v e  d i f fe rence  i n  the r e s u l t s .  0 
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u) 

Problem 
, 

a ) l  EGS 

EGSN 

a ) 2  EGS 

EGSN 
r 

b ) l  EGS 

EGSN 
L 

b ) 2  EGS 

EGSN 
L -  

c ) 2  EGS 

EGSN 
r 

d ) 2  EGS 
* 

1.57 1.63 1.68 1.705 1.73 1.80 

92/37 77/31 61/25 50/21 48/19 62/24 

92/22 77/19 61/15 50/13 48/12 62/15 

133/65 111/56 88/46 73/40 70/38 88/47 

138/33 118/29 97/23 82/20 82/20 105/25 

85/27 71/23 56/18 46/15 46/15 62/23 

85/17 71/14 56/11 46/9 46/9 62/12 

88/30 88/30 74/26 63/23 67/24 89/32 

106/20 87/17 65/13 55/11 62/12 83/16 

130/49 90/35 89/34 79/28 69/24 88/33 

138/27 114/22 91/18 80/14 62/12 82/16 

157/22 133/18 107/15 94/13 72/10 . 87/12 

Table 1. ( i te ra t ions /seconds)  

1 

4 -  

2 

Diagram A 
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